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Zusammenfassung

Virtual Reality (VR) ermöglicht es den Nutzern, Bilder auf eine immersivere Weise
zu erleben, insbesondere mit immersiven Formaten wie Panoramen (180◦ and 360◦)
und stereoskopische Bilder. Die derzeitigen Anwendungen ermöglichen die visuelle
Erkundung dieser immersiven Inhalte, aber es fehlt an haptischen und interak-
tiven Elementen, die die Immersion erheblich verstärken könnten. In dieser Ar-
beit wird vorgeschlagen, haptisches und pseudohaptisches Feedback in die VR-
Bildbetrachtung zu integrieren, um das Gefühl der Präsenz, ein Schlüsselindikator
für die Immersion in VR, zu verstärken. Zu diesem Zweck werden aus panorma
Bildern mit Hilfe von maschinellen Lernen Tiefenkarten generiert und diese zu 3D-
Darstellungen der Bildes verarbeitet. Dieses 3D Mesh ermöglicht es dem Benutzer,
mit einer virtuellen Hand mit dem Bild zu interagieren und haptisches und pseudo-
haptisches Feedback auf der Grundlage der berührten Oberfläche zu erfahren. Das
haptische Feedback wird in Form von Vibrationen des Controllers implementiert,
das pseudohaptische Feedback in Form von Tönen und visuellen Effekten. In einer
Studie werden die Auswirkungen der 3D-Darstellung und der Feedbacktechniken auf
das Präsenzgefühl untersucht. Die Ergebnisse zeigen, dass das kombinierte haptis-
che und pseudohaptische Feedback das Gefühl der Präsenz beim Betrachten von
VR-Bildern deutlich verbessern. Während das haptische Feedback allein nur eine
begrenzte Wirkung hat, steigert seine Kombination mit Tönen und visuellem Feed-
back das Gefühl der Präsenz erheblich. Die Studie zeigt auch, dass Bilder, die in
der 3D-Mesh-Darstellung präsentiert werden, ein stärkeres Gefühl der Präsenz ver-
mitteln als monoskopische Formate, aber stereoskopische Formate sind nach wie vor
am immersivsten.



Abstract

Virtual Reality (VR) allows users to experience images in a more immersive way,
especially in immersive formats such as spherical (180◦ and 360◦) and stereoscopic
images. Current applications allow for visually exploring this immersive content
but lack tactile and interactive elements that could significantly amplify immersion.
This thesis proposes integrating haptic and pseudo-haptic feedback into the VR
image-viewing experience to increase the sense of presence, a key indicator of im-
mersion in VR. To this end, depth maps are generated from spherical images using
machine learning models and processed into a 3D mesh representation of the im-
age. Six degrees of freedom (DoF) tracked controllers, represented inside the virtual
environment as hands, can collide with the surfaces of the image mesh and trigger
haptic and pseudo-haptic feedback. Haptic feedback is implemented as controller
vibrations, and pseudo-haptic feedback as audio cues and visual effects. A study is
used to evaluate the impact of the 3D mesh and feedback techniques on the sense
of presence. The results demonstrate that the combined haptic and pseudo-haptic
feedback significantly enhance the feeling of presence in VR image viewing. While
haptic feedback alone has a limited impact, its combination with audio cues and
visual feedback substantially elevates the sense of presence. The study also shows
that images presented in the 3D mesh representation offer a higher sense of presence
than monoscopic images, but stereoscopic formats remain the most immersive.
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1 Introduction

The Virtual Reality (VR) and Augmented Reality(AR) headset market is estimated
to grow 35.6 % each year until 2032 [1]. The user base of these devices is showing a
growing interest in diverse and more immersive VR applications, including services
they already use on their smartphones but re-imagined for VR. This includes image
viewing, which offers a unique opportunity to enhance the experience of exploring
visual content. Stereo images deliver a convincing 3D effect when viewed through a
VR headset. Panoramas immerse the user by wrapping around the viewpoint. And
spherical (180◦ or 360◦) images envelop the viewer in a virtual sphere and provide
an unparalleled sense of presence. However, current VR image-viewing experiences
remain primarily visual. Some integrate static effects, like background audio or
particle systems, but lack interactive elements. Dynamic visual, audio, and haptic
feedback could further amplify immersion by enabling viewers to explore media
interactively.

This work investigates adding those interactive elements to VR image-viewing for
spherical images. An existing VR image-viewing application is extended to allow the
viewer to explore the image with a virtual hand and receive haptic and pseudo-haptic
feedback relative to the surface they touch. To enable this interaction at the correct
distance for the objects in the image, a 3D mesh representation is generated. The
system uses machine learning depth estimation to create a depthmap of the image
and processes it into a 3D virtual environment. In combination with a material
map and surface properties, the appropriate vibration, audio cue, and visual effect
are played in response to the user touching the image. Figure 1.1 visualizes the
combination of pre-processing and real-time calculations that form this approach.
A user study is conducted to determine the influence of the 3D mesh and the feedback
techniques on the sense of presence.

1
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Figure 1.1. Using an image as input, a depth map is derived to create a collision
mesh. A material map partitions the image into haptic materials. They contain
sound and haptic clips correlating to the surface they represent. When a VR con-
troller triggers a collision, the respective haptic material is selected to generate con-
troller vibration, play back the material’s associated sound clip, and display visual
effects on the image.

The contributions of this thesis are the following:

• It introduces a process to enable exploring images with your hands in VR
through haptic and pseudo-haptic feedback.

• Errors caused by the distortion of the equirectangular projection in state-of-
the-art spherical monocular depthmap estimation models are visualized.

• A technique is presented for creating 3D representations from spherical images
while working around this equirectangular projection error.

• The influence of haptic and pseudo-haptic feedback techniques on the sense of
presence in the context of spherical images is measured.

• 3D mesh representation is shown to create more presence than the monoscopic
images but less presence than the stereoscopic images.

The remainder of this work is organized as follows. Chapter 2 presents background
information and summarizes related work for image viewing in VR, haptic and
pseudo-haptic feedback, and different depthmap estimation methods for spherical
images. Chapter 3 describes the methodology for the implementation and user study.
After comparing different depthmap generation models, the process of constructing
the 3D mesh representation is described. Then, the implementation of each feedback
technique and the collision detection is laid out. Lastly, the study configurations
for the haptic and pseudo-haptic feedback evaluation and the 3D representation
investigation are described. Chapter 4 presents and analyzes the study results.
Finally, chapter 5 concludes this thesis and discusses potential future works.
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2 Background and Related Work

This chapter gives relevant background information by presenting current image-
viewing applications for VR, introducing the concept of presence, and discussing
haptic and pseudo-haptic feedback methods. Then, approaches for known depthmap
generation, including techniques for spherical images, are presented.

2.1 Image Viewing in VR

The current landscape of VR image-viewing applications showcases a variety of
approaches to enhance the user experience. For instance, the ’VR Photo Slideshow’
[2] app in the Meta Horizon Store prioritizes customization, allowing users to control
the number and placement of virtual screens within their environment. In contrast,
the Steam platform offers viewers like ’VR Photo Viewer’ [3] and ’Witoo VR photo
viewer’ [4], which emphasize compatibility with diverse image formats, including
360◦ panoramas and 3D photos. The ’Virtual Home Theater VR Video Player’
[5] app on Steam further expands the scope of VR image viewing by simulating a
cinematic experience for both 2D and 3D movies, complete with customizable audio
settings. The app ’immerGallery’ [6] for Meta Quest devices is made by immerVR
[7], a German Virtual Reality startup around immersive media. It supports the
most extensive range of image types, from panoramas to spherical images in mono
and stereo formats. Furthermore, it enhances the viewing experience with particle
effect systems, background music, and voice-over.

Despite these advancements, the current state of VR image-viewing apps reveals
a considerable opportunity for innovation. The integration of sophisticated haptic
feedback mechanisms, advanced 3D representations, and interactive features remains
largely unexplored.
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2 Background and Related Work

2.2 Presence

Presence is a key concept used to determine the effectiveness of a VR experience. In
general, presence is described as feeling present inside a computer-based environment
[8], [9]. In literature, presence is subdivided into two categories. Social presence
refers to the sensation of being included in a group of virtual agents [10]. Spacial
presence refers to the feeling of being physically located in the virtual environment.
Dinh et al. [11] show that adding tactile, olfactory, and auditory cues can increase
the sense of presence. A concept often used in conjunction with presence but not
as clearly defined is immersion. Some researchers, like Slater et al. [12], define
immersion as a quantifiable technological aspect of a system to which it is able
to generate an illusion of reality. Others, like Witmer et al. [13], describe it as the
experience of being included in an environment and forgetting the real world around
oneself. Slater et al. [12] have shown that increased immersion does not necessarily
lead to an increased presence.

Questionnaires can be used to measure the presence inside virtual environments.
The most prominent presence questionnaires are created by Slater et al. [14] and
Witmer et al. [13]. The Igroup Presence Questionnaire (IPQ) [15] subdivides its
prompts into multiple presence measurement categories. It measures general pres-
ence, involvement, experienced realism, and spatial presence. Next to phrasing their
own prompts, the igroup integrates prompts from multiple verified presence ques-
tionnaires into the IPQ. This includes prompts from the aforementioned works as
well as prompts from Hendrix [16] and Carlin et al. [17].

2.3 Haptic Feedback in VR

In Virtual Reality, haptic feedback is used to inform users about tactile sensations
when interacting with a 3D environment. This feedback deepens the immersion and
realism the user experiences in virtual experiences.

2.3.1 Haptic Feedback in Current Commercial VR Systems

With the basis of VR controllers still using inertia-based vibration motors, the hap-
tic feedback in commercial consumer VR hardware has not changed much since the

4



2.4 Pseudo-Haptic Feedback

introduction of the Oculus Touch controllers for the Oculus Rift CV1. It uses Lin-
ear Resonant Actuators (LRA) [18] to provide the vibration feedback. These can
simulate different interactions by varying the strength and amplitude of vibrations.
The controllers have a latency of 33 ms when responding to vibration changes. This
causes a lack of nuance to convey more detailed feedback. To combat this, Oculus
introduced buffered feedback, which allows for faster response times and more nu-
anced vibration waveforms. Later VR systems also improved their haptic feedback
by increasing the detail the vibration waveform could represent. Newer haptic mo-
tors can achieve lower latency and a higher range of frequencies. The Valve Index
Controllers do this by using high-definition LRAs [19]. This allows them to imitate
a broader range of sensations. They also add individual finger tracking as a feature
that could be used to add pseudo-haptic feedback to applications.

2.3.2 Haptic Feedback in VR for Media Content

Haptic feedback for media is a relatively unexplored area. Most research in haptic
feedback for VR has been done for 3D objects. At this time, there is only one
project that adds haptic feedback to photos and videos in VR. Touchly [20] is an
application for the Meta Quest and SteamVR devices that provides haptic feedback
based on a simulated hand collision with video content. It uses machine learning
to create a depthmap of the media, then uses that map for the hand collision and
vibration feedback. Detailed information about the application’s internal workings
is not available as it is a closed-source project, and the developers have not published
any papers on the subject.

2.4 Pseudo-Haptic Feedback

Pseudo-haptic feedback refers to a sensory illusion in which users perceive haptic
sensations without the use of direct physical forces or actuators. The illusion is
created by manipulating the user’s sensory perceptions through additional visual
and auditory cues. This is possible thanks to the principle of sensory integration, the
concept that the brain combines multiple sensory inputs to the objective perception.
By feeding the brain certain inputs, the illusion of texture, weight, resistance, or
motion can be created [21] [22].

5



2 Background and Related Work

Pseudo-haptic feedback can be created using various methods targeting different
sensory inputs [23]. The most common techniques involve:

• Deformation: The touched object is deformed to match the reaction the user
would expect with a real object. This can simulate a feeling of pressure and
weight and give the user the feeling they are manipulating a real object. Sato
et al. [24] have shown that this can create the sensation of softness.

• Translation and simulated inertia and momentum: When the user touches the
object, it receives an appropriate amount of force. The force coupled with a
physics engine with inertia and momentum replicates the movement the user
would expect with a real object. It supports the user’s feeling of force and
weight.

• Texture changes: Using visual patterns around or behind the area the user
interacts with can simulate the feel of different textures.

• Auditory cues: Adding auditory cues to visual feedback can positively influence
the haptic illusion. Different materials create different sounds when interacted
with. Synchronizing the user’s interaction with fitting audio cues can suggest
information about the surface, such as texture, hardness, and other qualities.
By using 3D audio techniques, this effect can be strengthened. According to
Hosoi et al. [25], auditory cues can also create pseudo-haptic sensations of
the environment, such as wind. Kaneko et al. [26] have shown that changing
the delay, frequency, and loudness of auditory feedback can even influence the
heaviness sensation a user experiences. This is supported by Canadas-Quesada
et al. [27], who show that people associate shorter auditory feedback with a
more stiff haptic perception.

• Electrical muscle stimulation (EMS): A more novel approach to pseudo-haptic
feedback is using EMS devices placed on the muscle of the arm. Kim et al.
[28] have used this to simulate the muscle effort when lifting an object. This
has been shown by Rietzler et al. [29] to successfully induce weight perception
when combined with other pseudo-haptic feedback types.

• Virtual hand: The rubber hand experiment by Botvinick et al. [30] has shown
that the visualizations of limbs can elicit a sense of ownership. By matching the
sensations felt by the body with the observations of a fake limb, the brain can
be tricked into believing the limb belongs to the body. Similarly, a virtual hand
that follows the movement of a VR controller can elicit a sense of ownership.
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2.5 Depthmap Generation

In this context, a more realistic hand can evoke a stronger sense of ownership,
but realism has no influence on the sense of agency [31].

• Control-display (C/D) ratio manipulation: This technique involves creating an
offset between the user’s hand (control) and its virtual representation (display)
when interacting (lifting, moving) with virtual objects [22], [32], [33]. Through
this offset, the user experiences a feeling of weight. It has been shown by
Moosavi et al. [22] to be effective at creating object lifting behavior similar
to real object lifting. The perceived weight through C/D ratio manipulation
depends on the size of the virtual objects. Larger objects require a lower C/D
ratio for users to perceive any weight, while for smaller objects, a higher C/D
ratio is enough [34].

• Shaking-Finger Effect: A similar technique to C/D ratio manipulation is the
shaking-finger effect as described by Sato et al. [24]. This involves applying
micro-movements to the fingers of a virtual hand while it is moving over a
surface. The movements of the fingers can give the impression of touching an
uneven surface. It gives a sense of roughness. Another technique described by
Sato et al. is the increasing speed effect. Here, the speed of the virtual hand
increases while the object is being touched.

2.5 Depthmap Generation

For this project, depthmaps are used to provide haptic feedback. Depthmaps are
textures where each pixel holds a depth value, often an 8-bit or 16-bit value. In our
use case, each pixel represents the depth of the corresponding pixel on the RGB im-
age. The creation of depthmaps is a well-researched area. Depth estimation used to
be most commonly done by matching stereo image pairs, but with the improvements
in machine learning, recent techniques can estimate depth reasonably well, even from
monoscopic images. Depth estimation for 180◦ and 360◦ is less researched. Some
approaches project the spherical images into multiple planar images, run a stan-
dard depth estimation on each, and combine them into a spherical depthmap. The
following sections will discuss the different methods of depth estimation.
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2 Background and Related Work

2.5.1 Depth Estimation using Machine Learning

In recent years, many works have used machine learning to estimate depthmaps
from single 2D input images. Eigen et al. [35] use a two-component architecture that
combines global and local views to predict the depth. They use two convolutional
neural networks (CNNs, [36], [37]), one to predict the global depth and a second to
refine the depth locally. The second network takes the first output and the original
image as input to refine the depth around object boundaries and wall edges. One
year later, Eigen et al. [38] make several improvements to their architecture. Most
prominently, they add more convolutional layers to each CNN and add a third CNN.
This increases the output resolution and outperforms existing methods on the vast
majority of benchmarks.

While Laina et al. [39] also use a CNN to predict depth, their approach uses a single
CNN that follows residual learning. Thanks to being fully convolutional, they are
able to greatly reduce the number of parameters and, thus, the number of training
samples required. This approach is faster and more efficient than using multiple
CNNs and even runs in real-time on videos.

One issue with these approaches is that they require a lot of labeled training data.
To work around this, Garg et al. [40] present an approach using unsupervised learn-
ing. Instead of a depth ground truth, they use two images with a known camera
movement between them, such as stereoscopic images. Using an Encoder-Decoder
Architecture, a deep CNN predicts the depth of one image. Using the predicted
depth and the known camera movement, the decoder generates a warped image.
This is matched with the encoder input to construct a simple loss. They achieve a
single-view depth estimation comparable to other state-of-the-art methods. Simi-
larly, Godard et al. [41] train a CNN on reconstruction loss. Their approach differs
in using bilinear sampling to achieve fully differentiable loss. It includes a left-right
consistency check included in the network to improve result quality. Through this,
they achieve a better-trained model, which beats the previous method in quality
measurements.

Unsupervised learning based on stereo images has the drawback of "impose priors
on the depth such as small depth gradient norms which may not be fully satisfied
in the real environment" [42]. To take advantage of the easy data acquisition of
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unsupervised learning and the accuracy of supervised learning, they propose a semi-
supervised approach. Their architecture uses a stereo image and depth data from
LIDAR measurements as learning data. While LIDAR data is typically sparser than
image resolution, combining it with the image alignment complements the LIDAR
ground truth. They archive better performance metrics than both unsupervised
methods across the board.

These deep learning methods can estimate accurate 2D depthmaps. However, when
projected into a 3D mesh, the details around objects and edges are lacking. To
improve this Li et al. [43] propose a two-streamed CNN. Instead of only estimat-
ing depth, their architecture splits the processing into two separate streams. One
for the prediction of a depthmap and one for the prediction of a map of depth
gradients. Both streams use two CNN layers and two fully connected layers. The
output of both streams is fused together with the initial input to one highly detailed
depthmap. Their use of a set loss over multiple images prevents overfitting and
improves accuracy. With this, their architecture is competitive with other methods
while getting more accurate and detailed results for 3D projections.

Liu et al. [44] propose a depth prediction approach using a Deep Convolutional
Neural Field (DCNF) with Fully Convolutional Networks and Superpixel Pooling
(FCSP). This technique brings an order of magnitude training speedup, which en-
ables the use of deeper networks. Their results outperform previous methods, while
their optimizations allow for larger input resolutions.

Instead of using a CNN, Islam et al. [45] are using a Generative Adversarial Net-
work (GAN) to estimate depthmaps from single RGB images. Their architecture is
composed of a fine-tuned generator and a global discriminator. The encoder takes
the input image and depthmap and transforms them into their corresponding latent
representations. Afterward, it translates each into a depthmap. The discrimina-
tor uses the fake and real depthmap to guide the generator in generating realistic
outputs. The resulting model is able to estimate depth robustly in highly dynamic
environments. Their results show that they match or slightly outperform other
approaches.

Monocular depth estimation models not trained on 360◦ datasets produce sub-
optimal results for spherical images. However, training sets with ground truths
for supervised learning are rare for omnidirectional media. To circumvent this chal-
lenge, Zioulis et al. [46] generate a new training data set with ground truth depth
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annotations using 3D datasets. They render 360◦ images together with ground
truth depth maps from 3D environments of real-world captures and synthetic en-
vironments. With that dataset, they train two fully convolutional encoder-decoder
networks. The first, UResNet, resembles other CNNS from literature, and the sec-
ond, RectNet, was designed to handle better the distortions caused by the quirect-
angular format. Both networks beat models that were not trained on spherical
images. RectNet makes more accurate predictions, but UResNet’s predictions are
smoother.

The biggest challenge in depth estimation for monocular 360◦ images is the distortion
caused by the equirectangular projection. To counter this, Wang et al. [47] propose a
network using two projections. In addition to the equirectangular image, the network
uses a cube map projection as input. The equirectangular projection provides a
wide field of view, giving access to all surrounding information, while the cube map
projection provides smaller but non-distorted views. In their approach, they use
spherical padding on the cube map to reduce boundary inconsistency on the cube
faces. Each projection is fed into a separate model branch, and the features of
each branch are shared after each layer using a bi-projection fusion procedure with
learnable masks. This approach performs better than OmniDepth [46] in terms of
qualitative results.

Similarly, Jiang et al. [48] utilize a fusion of a cube map projection branch and an
equirectangular projection branch in their architecture. However, instead of using
two branches for the encoding and decoding stage and bi-directionally feeding the
features of each branch into the other, their approach uses two branches for the
encoding but only one branch for the decoding stage. During the encoding stage,
the features of both branches are fused, but the fused features are fed to the decoding
stage. This reduces the complexity of the architecture and increases generalizability.
UniFuse outperforms BiFuse [47] and OmiDepth [46] in terms of error metrics on
four popular datasets.

Instead of designing and training specialized models for 360◦ images, Rey-Area et al.
[49] propose an architecture that can utilize any state-of-the-art monocular depth
estimator. In the 360MonoDepth framework, 360◦ images get projected into a set of
overlapping perspective tangent images. Then, a state-of-the-art depth estimation
model predicts depthmaps for each tangent image. After projecting the tangent
depthmaps back into the equirectangular projection, a global optimization adjusts
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the scale and shift of the depthmaps to align them. Finally, the aligned depthmaps
are merged into one 360◦ map using Poisson blending. Using MiDaS v2 [50], it
matches the performance of UniFuse [48], but it can fail if the tangent maps are
incorrect, e.g. for large plain walls. The advantage of this architecture is that it
improves over time as it can easily be upgraded with any advancements in planar
monocular depth estimation models.

Peng et al. [51] approach the depth estimation problem for spherical images similarly
in that that their approach also projects the panoramic image into several perspec-
tive views, passes them into an existing monocular depth estimation method such as
LeReS [52], and then stitches them back together. However, their approach uses an
equirectangular reference depthmap generated using a panorama-based method such
as UniFuse [48] to align the scale and shifts of the view’s depth values. On top of
that, they use a Laplacian-based Poisson blending to remove visible seams between
the merged views. They are able to outperform other stitching-based panoramic
depth estimation methods, such as 360MonoDepth [49] while being much faster.

2.5.2 Depth Estimation using Stereo Matching

Stereo matching is the process of finding pixels in the stereoscopic views that cor-
respond to the same 3D point in the scene. This allows for the calculation of the
disparity, the distance between the matched pixels in both views. Finally, the dis-
parity, together with the camera lens specs, can be converted into a depth value
using Equation 2.1 [53]. fc is the focal length in pixels, which is the distance be-
tween the camera lens and the image sensor and varies depending on the camera
model and resolution. ∆V is the distance between the two views in millimeters, and
∆P is the disparity, the distance between matched pixels. The equation returns the
depth in millimeters of the object at the corresponding pixels.

depth = fc × ∆V

∆P
(2.1)

Stereo-matching can be done using different computer vision or machine learning
techniques. One of the simplest approaches is block-matching along horizontal lines.
For this, it is assumed that the corresponding pixels are at the same vertical height
in both views. Each horizontal scan line is checked for corresponding pixels. The
correspondence is determined by comparing the area around the pixel. This method
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requires calibration to adjust for lens distortion and ensure alignment of the scan
lines.
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For this thesis, the immersive media viewer ’immerGallery’ [6] is being extended
to support interactive haptic, auditory, and visual pseudo-haptic feedback. This
chapter introduces the methodology for implementing this extension and the design
of the study to evaluate its effectiveness. First, the creation of depthmaps and the
construction of 3D representations of images is explained. Then, the implementation
of each feedback mechanism and how collision detection triggers their playback are
explained. Lastly, the user study design is laid out.

The depth estimation with machine learning, image pre-processing, and meta-file
creation are implemented in Python 3.11.7, while the VR application is implemented
using the Unity Engine 2022.3.4f1 [54] and the C# programming language.

3.1 Depthmap Generation and 3D Mesh Construction

To enable interaction with the objects inside an image at appropriate distances to
the viewer, a 3D mesh is constructed using depthmaps. This section goes into detail
about the machine learning models used to generate the depthmap, how it needs
to be adjusted for spherical images, and how the final mesh is constructed and
displayed using dynamic tessellation.

3.1.1 Depthmap Precprocessing

The textures, including depthmaps, are not included in the build of the application
but are loaded from an external folder. Unity limitations force at runtime imported
textures to use at most 8-bit data in each channel. To load 16-bit depthmaps, we
encode the 16-bit data into the red and blue channels of an RGB texture. A Python
script iterates over all depthmaps, converts their 16-bit data into a 24-bit RGB
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image, and saves it to a new file path. Afterward, it adds the new file paths to the
corresponding image’s meta-file.

3.1.2 Machine Learning Model Comparison

The selection of machine learning models for depthmap generation was guided by
a multi-faceted evaluation that considered both the specific requirements of this re-
search and the broader landscape of available techniques. The models chosen for
in-depth comparison, MiDaS [50], ZoeDepth [55], 360MonoDepth [49], and Immer-
sity AI [56], represent a diverse range of methodological approaches and performance
characteristics.

Immersity AI was selected due to its promising performance in preliminary quali-
tative assessments, suggesting its potential for generating high-fidelity depthmaps
suitable for creating immersive 3D representations. However, it is essential to ac-
knowledge the limitations associated with its closed-source nature, which requires
per-image payment, prevents reproducibility when the service changes its codebase
and hinges on an active connection to its server.

MiDaS and ZoeDepth were included due to their open-source nature and efficiency,
facilitating transparency and reproducibility in the research process. The instal-
lation using Python is easy and allows for automatizing the depthmap generation
process. They take only a few seconds if executed on a GPU and produce outputs
with reasonably accurate results. Additionally, their robust performance across var-
ious datasets indicates their potential for generalizability to the spherical image
context.

360MonoDepth was explicitly designed to handle the unique geometric properties of
spherical images, addressing a key challenge in this research domain.

By incorporating these diverse models, the work aims to comprehensively evaluate
depthmap generation techniques, ensuring a balanced assessment of general-purpose
and specialized approaches. The ultimate goal is to identify the model that best
aligns with the specific requirements of this research, balancing accuracy, efficiency,
and applicability to spherical images while acknowledging the inherent trade-offs
associated with each model’s characteristics.
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(a) Input image (b) Ground truth

(c) MiDaS (d) ZoeDepth

(e) Immersity AI (f) 360MonoDepth

close distance far distance
Figure 3.1. Example outputs of different machine learning depth estimation mod-
els. Each prompted with the sample computer-generated image. Black/dark = far
distance, blue/bright = near distance. (a) input image. (b) ground truth. (c) Mi-
DaS depth estimation. (d) ZoeDepth depth estimation. (e) Immersity AI depth
estimation. (f) 360MonoDepth depth estimation. None of the depth estimations
reach the detail of the ground truth model. ZoeDepth has more details than MiDaS
but has a lower resolution output and is, as such, more blurry. Immersity AI has
the sharpest edges and most detail on objects.
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The models are objectively compared to each other in their ability to estimate depth
for spherical 360◦ images using computer-generated images with accurate ground
truth. The input images and depthmap ground truth are rendered using Blender [57]
with the Cycles ray tracing engine. One indoor and one outdoor scene is rendered
from multiple camera angles to create the testing set. This ensures that the test
images were not in any of the training data sets of the models. Furthermore, it allows
for comparison with an objectively correct ground truth. One possible drawback of
this approach is that the test images might not be perfectly photo-realistic in terms
of noise and complexity.

Each model is prompted using the generated testing set to generate depthmaps.
Figure 3.1 shows an example of a testing input and the generated output. Figure 3.1a
is the computer-generated input image. Figure 3.1b shows the computer-generated
ground truth of the input. Figures 3.1c to 3.1f show the depth estimations by MiDas,
ZoeDepth, Immersity AI, and 360MonoDepth. The ground truth and depthmap
values are normalized between each image’s minimum and maximum pixel values.
This allows for a direct comparison between the different model outputs and the
ground truth.

Table 3.1 shows the quantitative comparisons on the computer-generated dataset.
It lists the absolute relative (AbsRel) error, the mean absolute error, the root mean
square error (RSME), the log root mean squared (RSME-log), and the accuracy for
each depth estimation model. Equation 3.1 lists the equations for the error and
accuracy metrics. For error measurements, lower values are better; for accuracy
measurements, higher values are better. Blue-highlighted text is the best value
for the respective measurement, and bold text is the second-best. MiDaS has the
lowest RSME and RSME-log and is second best regarding AbsRel error, δ < 1.252,
and δ < 1.253 accuracy. 360MonoDepth has the lowest AbsRel error, the highest
δ < 1.252 and δ < 1.253 accuracy, and comes second best regarding MAE and
RMSE-log. Immersity AI has the lowest MAE, highest δ < 1.25 accuracy, and
comes second best in RSME and δ < 1.252 accuracy. Overall, these three models
are very close to each other in the results, each edging out the others by a margin
in two or three measurements. Only ZoeDepth performs significantly worse, coming
last in all but the δ < 1.25 metric.
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Table 3.1. Quantitative results on the computer-generated test dataset. Metrics
are calculated using the Equations 3.1. Highlighting: best, second best.
Model AbsRel MAE RMSE RMSE-log δ < 1.25 δ < 1.252 δ < 1.253

MiDaS 0.750 0.214 0.260 0.174 0.234 0.445 0.644
ZoeDepth 0.988 0.244 0.295 0.202 0.291 0.372 0.468
360MonoDepth 0.720 0.212 0.264 0.175 0.233 0.510 0.704
Immersity AI 0.820 0.210 0.262 0.179 0.303 0.445 0.596

Absolute relative error (AbsRel): 1
N

N∑
i=1

|zi − z∗
i |

z∗
i

Mean absolute error (MAE): 1
N
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i
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)
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(3.1)

Figure 3.2 shows the cumulative distribution function (CDF) of the error between
the estimated depth of each model and the ground truth. The x-axis represents
the error values, and the y-axis is the percent of pixels with an error less than the
curve value. The light blue line shows the CDF for the MidaS model, the dark blue
line for the ZoeDepth model, the yellow line for the 360MonoDepth model, and the
orange line for the Immersity AI model. 40 % of pixels of all models have an error of
less than 0.15. After that, the errors of MiDaS, 360MonoDetph, and Immersity AI
follow the same curve. 70 % of their pixels have an error of less than 0.3. ZoeDepth
performs a little worse, having an error of more than 0.3 for 38 % of its pixels. These
results show that the accuracy of the depth predictions is in a similar range.

Figure 3.3 visualizes the average error of each model as a heatmap. It shows where
the error is most severe for each model in terms of UV coordinate. The color displays
the error from dark blue to yellow in a range from 0 to 0.5. All models are most
accurate in the center of the image. MiDaS has an error of up to 0.35 at the top
and 0.5 at the bottom. Similarly, 360MonoDepth has an error of 0.4 at the top and
up to 0.5 at the bottom. ZoeDepth is the opposite, having an error of 0.5 at the top
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Figure 3.2. Cumulative distribution
function (CDF) of depth estimation
error for each model. Models were
prompted with 12 computer-generated,
equirectangular, 360◦ images from out-
side and inside scenes. All models have
similar absolute errors. ZoeDepth is
slightly worse.

Figure 3.3. Average depth estimation
error by UV position in the image. All
models have similar error distribution:
smallest error in the center, larger error
towards left and right edges, and largest
error towards the top and bottom edges.
MiDaS and 360MonoDepth have their
largest error at the bottom. ZoeDepth
has its largest error at the top. Immer-
sity AI has a similar error at the top and
bottom.

and 0.4 at the bottom. It is also more severe towards the left and right edges of the
image. Immersity AI has the least strong difference between the top and bottom
edges and the middle. Both edges reach an error of up to 0.3. This shows how all
models have problems estimating the depth in the polar region of the equirectangular
projection. Even 360MonoDepth, the model specifically designed to account for the
distortion of spherical images, cannot predict the correct depth. This problem with
the polar regions can be seen even more clearly in Figure 3.4. It shows the average
difference between a model’s estimate and the ground truth based on the vertical
position of the pixel. The x-axis represents the vertical height of the pixels in the
image, and the x-axis shows the average error at that height. MiDaS is represented
by the light blue line, ZoeDepth by the dark blue line, 360MonoDepth by the yellow
line, and Immersity AI by the orange line. All models have the lowest error at 50 %,
the vertical middle of the images, and significantly higher error towards the edges.
In the center, MiDaS and 360MonoDepth have an average error of less than 0.12,
while their error at the edges goes up to 0.5. ZoeDepth has a slightly lower error
of 0.48 at the edges but a higher error of 0.16 in the center. Immsersity AI has a
similar error at the center but achieves the smallest error at the edges with 0.34.
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Figure 3.4. Average depth estimation error by vertical position in the image. Er-
ror peaks at the top and bottom edges of images. The smallest errors are in the
center. Immersity AI has the smallest error of all models on the edges. MiDaS and
360MonoDepth have the smallest error in the middle.

This discrepancy at the polar regions of the depthmaps creates problems for the
mesh generation and is addressed in Section 3.1.3. Regarding the non-polar regions,
objective absolute depth correctness is not the most important metric. After gener-
ating 3D meshes using a prediction of each model, it is apparent that the subjective
quality does not relate to the average corrective of the depthmap. Edge clarity, detail
on objects, and relative correctness between objects are much more important than
absolute correctness. A blurry edge around an object in the depthmap leads to long,
broad gradients around them that become very apparent to the viewer. The relative
depth between objects and inside objects is more important to a viewer’s subjective
perception than the correctness of the object’s absolute distance. For example, the
correct distance of background objects is not as important as the correctness of the
details on the main foreground objects. This leads to the depth difference compari-
son with the ground truth not being a good measurement for the subjective quality
of a depthmap for constructing the 3D geometry.

Subjective evaluation of a set of test images inside the VR application has shown that
the depthmaps produced by Immersity AI consistently generate the best-looking 3D
representations. Because of this, the user study uses these depthmaps.
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(a) Input image (b) Depthmap

(c) Initial mesh (d) Rectified mesh

Figure 3.5. Errors in constructed mesh due to depthmap errors and correction
through peak minimization. (a) input image. (b) depthmap for mesh generation.
(c) constructed mesh without error adjustment has large peaks at the poles.
(d) rectified mesh after error adjustment.

3.1.3 3D Mesh Construction for Spherical Images

Because of their design, most 360◦ cameras do not capture highly detailed informa-
tion at the polar regions of images. This low-quality data, combined with the heavy
distortion in those regions, leads the models to not estimate the depth accurately
in the polar regions. Even the models designed explicitly for spherical images, like
360Monodepth, show this inaccuracy in a less extreme form. In the tested cases,
this was always an underestimation of the actual distance. This causes the con-
structed meshes to protrude towards the origin position at the polar regions. The
effect can be observed in Figure 3.5c, which was constructed from the input image
seen in Figure 3.5a and the depthmap seen in Figure 3.5b. At the polar regions,
the vertices in the middle of the constructed mesh protrude towards the geometry’s
center.
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To remedy this, the mesh construction algorithm adjusts the depth in those regions.
The construction starts with a simple, uniform sphere. First, the depth for each
vertex is sampled from the depthmap at its respective texture coordinate. It is
transformed to a distance value by multiplying with an image-specific multiplier.
This modifier is calculated based on a reference value that has to be set in each
image’s meta-file. It is given by a UV coordinate and a goal distance value, which
allows the program to calculate the modifier it needs to use to achieve the correct
distance. Then, each vertex is positioned along its respective normal vector using
the calculated distance. After the initial mesh is constructed, the system estimates
the supposed height in both polar regions by averaging the height of the vertices
along a circle around them. The depth values are adjusted using the estimated
height to achieve that height more closely. In the edge region of the polar areas, the
original depth and adjusted depth are lerped using a smoothstep function to create
a smooth transition. Finally, the vertices are recalculated using the normals and
the adjusted depth values. This has proven to rectify the problem and produce an
improved mesh for all tested images. Figure 3.5d shows the algorithm output in the
previous example case.

Figure 3.6 shows the CDF of the absolute adjustment made to the depth values
during mesh construction. 80 % of values are adjusted by less than 0.2 and 33 % of
values are not adjusted at all. At most the depth is adjusted by 0.64 and on average
by 0.16.

3.1.4 3D Mesh Construction for Planar Images

While this thesis focuses on evaluating spherical images, the implemented solution
also supports planar images. Mesh construction for planar images uses a different
approach than the construction for spherical images. The process starts with a
flat plane. First, the virtual camera position, the position in the application space
where the camera would be placed to take the image, is calculated. The Field of
View (FOV) of the camera that took the image is needed and must be defined in
the image’s meta-file. Equation 3.2 calculates the distance of the image plane origin
position to the virtual camera. The scale is the width of the image plane, and the
FOV is the provided FOV in degrees. Extrapolating the plane origin along the
plane normal vector by the equation result gives the virtual camera position. Then,
a normal direction vector from the virtual camera is calculated for each vertex,
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Figure 3.6. Cumulative distribution function (CDF) of the depth adjustment during
mesh construction. The difference of depth values from before pole error correction
to after.

which is multiplied with the same modifier as in the spherical process to get the
final vertex position.

cameraDistance = 0.5
scale × tan (FOV

180 × π) (3.2)

In addition to the mesh construction, the planar process supports manual translation
and scale values in the meta-file. This is used to position the planar image more
optimally to improve the appearance of a virtual environment.

3.1.5 Dynamic Runtime Tessellation

While the collider mesh is constructed only once after an image is loaded, the visible
mesh is built inside a shader from scratch for each frame. This enables the use
of dynamic tessellation during the construction process, enabling a higher fidelity
output while keeping to performance limits. First, the vertex shader calculates the
raw depth value using the depthmap. Afterward, the hull shader uses this value to
determine how strong the gradient of the edges of a triangle is. This gradient is
used to determine the tessellation factor. At the same time, the hull shader clips
any triangles outside of the view frustum. This prevents not rendered geometry
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from being tessellated and improves the performance. Finally, after the tessellation
stage uses that factor to subdivide the geometry, the domain shader executes the
same construction logic as the collider mesh generation.

Runtime tessellation is also used to create smoother geometry for visual effects such
as the sine wave. The tessellation factor takes into account the area around the
vertex, adjusting visual effects and increasing the fidelity of the mesh.

3.2 Feedback Mechanisms

This section introduces the implementation of the haptic and pseudo-haptic feedback
mechanisms and how they are driven to influence the user experience.

Each image’s meta-file defines different haptic materials. A haptic material defines
the haptic and pseudo-haptic response that should be played for specific image parts.
Each haptic material represents a combination of vibrohaptic, auditory, and visual
feedback mechanisms. A material map is used to define which areas of the image
are represented by which haptic material. The map uses specific color codes to
determine regions for haptic material. The utilized color codes are taken from a
list of 20 distinct colors [58] so they are easily distinguishable during the creation
process. Currently, the material map has to be painted manually using any image
editing program. However, it would be possible to partially or fully automate the
process using modern image segmentation machine learning models. Virtual hands
represent the user’s controllers inside the virtual environment. They allow the user
to see where they are moving their hands and interact with the image without taking
them out of the experience. Furthermore, the user is able to send the virtual hands
toward far away objects by holding down the grip button on the VR controller. This
allows them to explore the surfaces of the entire image, even parts far out of reach.

3.2.1 Vibrohaptic Feedback

Haptic sequences are saved in .haptic files. They are defined by their file path for
each haptic material. Their data is given in the JSON format and is loaded and
deserialized as such. These haptic sequences have a ’frequency over time’ curve
and an ’amplitude over time’ curve. They are created to match the profile of the
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Figure 3.7. Meta Haptic Studio [59], a tool for haptic sequence creation. In the
center are frequency and amplitude curves, and on the right side are sequence ad-
justment settings.

audio file for the same haptic material and are played back synchronized with their
respective audio to create a cohesive experience. To create these sequences, the
Meta Haptic Studio [59] app is used. Figure 3.7 shows the app’s interface. On the
left side, audio files are displayed. In the center, the frequency and amplitude curves
can be seen matched to the respective audio wave. The right-hand side tools allow
for the adjustment of the output curves.

3.2.2 Auditory Feedback

Audio files are defined by a path inside the image’s meta-file for each haptic material.
They are loaded using UnityWebRequest and DownloadHandlerAudioClip. They
are played back using spatialized audio sources on each hand, meaning an audio cue
will be perceived as originating at the position the user is interacting with.
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3.2.3 Visual Pseudo-Haptic Feedback

In addition to the pseudo haptics provided by audio cues, visual effects are added
around the points the user touches. Fake ambient occlusion, vertex offset, UV dis-
tortion, and a ripple wave effect are implemented by extending the image shader.

The right-hand and left-hand positions are passed to two variables in the image
shader. They are used to calculate the distances of each fragment to the hands.
The shader uses that distance to darken the image around the area the hand hovers
over or touches. This creates a fake ambient occlusion effect and the illusion that
the hand casts a shadow onto the mesh. Figure 3.8a shows the ambient occlusion
around the virtual hand on a white mesh. In addition to the hand positions, the
hand origin to mesh distance, the UV coordinate, and the normal of the mesh
contact point are collected for each hand via a ray cast and passed to the shader.
They are used in combination to drive the rest of the visual effects. If the hand
script detects a collision, the settings for the visual effects of the correlating haptic
material are passed to the shader variables for the correct hand. Soft materials are
visualized using a vertex offset along the normals as seen in Figure 3.8b. Depending
on how ’soft’ the haptic material is configured, the mesh will bulge inwards if the
hand touches it. Another effect is the visual distortion around the touched area, as
shown in Figure 3.8d. The UV texture coordinates are warped around the hand to
mimic the effect of scrunching the surface, which can give the perception of moving
around cloth. Lastly, a wave effect, shown in Figure 3.8c is implemented. It shows a
sine wave around the contact point, defined by frequency, amplitude, distance, and
speed. The wave is displayed using a vertex offset and coloring the high and low
points of the wave with colors defined in the haptic material. For example, the sine
wave can mimic water by adding a vertex offset, then darkening the through, and
whitening the crest.

3.2.4 Collision Detection and (Pseudo-)Haptic Feedback Playback

The image’s collider is realized as a concave mesh collider. In the context of the
Unity engine, these collider types offer a reduced feature set. To work around their
limitations, the collision detection uses a multi-faceted approach. Sphere colliders
around the controller are used to determine a preliminary collision guess, and a ray
cast is used to refine the position and retrieve the UV information from that point.
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(a) Fake ambient occlusion: The area be-
low and around the hand is darkened de-
pending on the distance to the mesh. It
gives the illusion of dynamic lighting in the
image.

(b) Vertex offset: The vertices below the
hand are moved backward along their nor-
mals. It gives the illusion of a soft, budging
surface.

(c) Sine wave: Vertices are offset accord-
ing to a sine wave. The top of the wave
is brightened, and the bottom of the wave
is darkened. The mesh is tessellated in the
area of the wave to allow for smoother ge-
ometry. It enables effects such as water.

(d) UV coordinate distortion: The UVs
around the hand position are distorted.
This gives the illusion of a surface that is
moved around and scrunched, for example,
cloth.

Figure 3.8. Implemented visual feedback techniques.
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3.2 Feedback Mechanisms

Figure 3.9a shows the position of the sphere colliders around the controller. They
only receive collision messages with the image collider if their origin point is on
the front-facing side of the mesh face they are colliding with. With only a single
sphere collider around the hand, the collision messages stop when the controller
origin passes through the image mesh. To prevent this, multiple sphere colliders are
placed around the controller, offset in each direction, to allow the collision detection
to function even if the user partially or fully reaches through the image mesh.

During the update loop, all spheres’ collision points and collision normals are weighted
by their distance to the controller and averaged together. In the next step, a ray
cast from the controller origin in the direction of the averaged collision point is made
to get the controller’s specific distance to the mesh and the UV coordinate at the
collision point. This process is shown in Figure 3.9b. The positions where the green
and blue lines meet are the collision points provided by the sphere colliders. Each

(a) Six sphere colliders positioned around
the hand, offset into each axis direction.
Sphere colliders can only register collisions
with the 3D mesh if the sphere origin is on
the front-facing side of the face it collides
with. Multiple sphere colliders are used to
enable collision detection, even if the hand
moves behind the front faces.

(b) Sphere collision points with normals
and the ray cast vector. Blue lines are colli-
sion point normals. Green lines are vectors
from the collision point to the weighted av-
erage collision point. The red line is the ray
cast vector. First, sphere colliders provided
collision points around the closest mesh po-
sition. The averaged point gives a good es-
timation for the closest point. Then a ray
cast provides a point on the mesh, distance,
and UV coordinates.

Figure 3.9. Collision detection system with hand colliders and ray cast
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blue line is the normal vector of a collision point, and the green lines are vectors
from each collision point to the weighted average collision point. The red line is the
final ray cast from the hand position toward the mean collision position.

If the user passes the controller too far through the image mesh, the collision point is
replaced by a new ray cast from the head position to the controller position. During
preliminary testing, this resulted in a better user experience than freezing the hand
in place before it passes through the mesh or moving it outside using the collision
point.

Finally, the UV coordinate of the ray cast is used to sample the material map and
retrieve the haptic material at the interaction point. Then, the respective haptic
sequence is passed to a haptic player instance, the audio file is set in the audio
source, and the visual effects are passed to the image shader.

3.3 Study Design

A user study is conducted to determine the influence of the 3D representation and
the haptic and pseudo-haptic feedback.

It is split into two parts. First, the influence of haptic and pseudo-haptic feedback
on presence is researched; second, the influence of a 3D representation of images on
presence. The hypotheses for the study are as follows.

• H1: The addition of haptic feedback (controller vibration) will significantly
increase user presence in VR image viewing compared to no haptic feedback.

• H2: The combination of haptic feedback with visual pseudo-haptic feedback
(visual distortions, waves, indenting) and audio feedback will further enhance
presence compared to only haptic feedback.

• H3: A mesh 3D representation of the VR image increases the user presence
compared to projecting the VR image onto a simple sphere.

Participants are shown a configuration with a specific image representation and no
feedback or a combination of haptic/pseudo-haptic feedback enabled. After each
configuration, a questionnaire is displayed and filled out inside the virtual environ-
ment. This is repeated multiple times for different configurations for each hypothe-
sis. The answers to the prompts are collected on a 0 to 6 Likert scale with different
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meanings depending on the question. In the second part of the study, the Likert
scale is offset and goes from -3 to +3. The study is conducted on a standalone Meta
Quest 3 headset.

3.3.1 Influence of Haptic and Pseudo-Haptic Feedback on Presence

The first part of the study tests hypotheses H1 and H2. Participants are shown
configurations that always enable the 3D mesh representation. The haptic, auditory,
and visual pseudo-haptic feedback is enabled in the specific combinations listed in
Table 3.2. After each image, the participant is asked to evaluate their experience
using the prompts shown in Table 3.3 on a scale of 0-6.

Haptic Auditory Visual
Control / / /
Haptic Yes / /
Haptic /w Audio Yes Yes /
Full Yes Yes Yes

Table 3.2. Overview of conditions for the first study part. Combinations of haptic
and pseudo-haptic feedback.

Prompt
G1 In the computer-generated world I had a sense of "being there".
SP1 Somehow I felt that the virtual world surrounded me.
SP2 I felt like I was just perceiving pictures.
SP3 I did not feel present in the virtual space.
SP4 I had a sense of acting in the virtual space, rather than operating some-

thing from outside.
SP5 I felt present in the virtual space.

Table 3.3. Prompts to determine presence. Igroup Presence Questionnaire [15]:
G1, SP1 - SP5. G1 is a general presence prompt. SP are spacial presence prompts.
Answers are given on a Likert scale of 0 to 6.

3.3.2 Influence of 3D Representation on Presence

The second part of the study tests hypothesis H3. Participants are shown one
image with no haptic and no pseudo-haptic feedback enabled. Using the left and
right VR controllers, they can change between two image representations. The
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sets of representations tested against each other are listed in Table 3.4. In each
study condition, the participants view one image in two different representations
and are asked to compare them in a questionnaire. The questionnaire uses the same
prompts shown in Table 3.3, but on a scale of -3 to 3, with labels "more left-hand
image", "similar", and "more right-hand image". Each condition is shown twice but
with the inverted order regarding representations. The source images used for the
comparisons are 180◦ stereo images with depthmaps. This enables them to be shown
in any representation and thus be used for all comparisons.

Representation 1 Representation 2
1 Mono vs. Stereo
2 Mono vs. 3D Mesh
3 Stereo vs. 3D Mesh

Table 3.4. Overview of conditions for second study part. Sets of image representa-
tions. Each set is a direct comparison between representation one and representation
two.

Figure 3.10 shows how the two views of the stereo images and the depthmap are
used to create each representation. Only the left view is rendered in both eyes to
make the mono representation, while each view is rendered in the respective eye to
make the stereo representation. For the 3D mesh representation, both eyes render
the left view, but a mesh is constructed from the depthmap as described in Section
3.1.3 to display distances.

3.3.3 Study Controller

The study controller is a part of the program that runs the participants through
the study. It iterates through the study configurations in a randomized order and
prompts the participant with a questionnaire after each configuration. Each feedback
mechanism can be globally enabled and disabled, and the desired image represen-
tation can be set to mono, stereo, or 3D mesh. The study controller instance uses
this to control which image is displayed, which feedback mechanisms are used, and
in what image representations.
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Mesh Generation

Depthmap

Mono Stereo 3D Mesh

Input

Left View Right View

Left / Right Output on VR Device 

Figure 3.10. Usage of 180◦ stereo image views to construct mono, stereo, and 3D
representation. The mono representation shows the left view in both eyes. The
stereo representation shows the respective view of each eye. The 3D mesh repre-
sentation shows the left view on both eyes but offsets the surface according to the
depthmap to display distance.
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Figure 4.1. Age and VR experience distribution by gender of study participants.
Average age of 29 years ± 12 std. 62 % men, 24 % women, 14 % non-binary. 33 % no
VR experience, 57 % very little VR experience.

In this chapter, the study results are presented and analyzed. The study was run
with the parameters given in Section 3.3. Before each participant’s study execution,
demographic information was collected using a questionnaire. After the experience,
a second questionnaire was used to gather additional opinions. Figure 4.1 shows
the demographic distribution of the participants. The left axis represents the par-
ticipant’s age in blue, and the right axis represents the participant’s previous VR
experience in orange. The x-axis splits the participants into three groups based on
their reported gender identification. Each box shows the first quartile to the third
quartile; the green triangles mark the mean values, the dark middle line the median,
and the two handles extending at the top and bottom of each boxplot represent
the farthest data point lying within 1.5 x the inter-quartile range. Circles represent
outlier data points. The number of participants is 21, with 62 % of participants
self identifying as men, 24 % as women, and 14 % as non-binary. Their mean age is

32
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29 years with a standard deviation of 12. Of the participants, 33 % reported no pre-
vious VR experience, 57 % very little VR experience, and 10 % reported moderate
VR experience.

4.1 Influence of Haptic and Pseudo-Haptic Feedback on
Presence

Table 4.1. Average rating of each prompt per study condition. Prompts from Igroup
Presence Questionnaire [15]; G1, SP1 - SP5. The control condition has no feedback
enabled.

Prompt Control Haptic Haptic w/ Audio Full
G1 In the computer-generated world

I had a sense of "being there".
2.83 2.93 4.31 4.52

SP1 Somehow I felt that the virtual
world surrounded me.

3.26 2.86 4.64 4.17

SP2 I felt like I was just perceiving
pictures.

3.74 2.69 2.12 1.90

SP3 I did not feel present in the vir-
tual space.

2.33 2.45 3.29 3.52

SP4 I had a sense of acting in the vir-
tual space, rather than operating
something from outside.

1.83 2.90 3.07 3.69

SP5 I felt present in the virtual space. 2.48 2.67 3.57 4.00

This section presents the results of the user study testing the influence of haptic,
auditory, and visual feedback on the feeling of presence inside virtual environments
constructed from pictures as described in Section 3.3.1.

Table 4.1 shows the averaged results of the presence questionnaire prompts for each
study condition. The first column shows the prompts used and the remaining
columns show the results averaged over all participants and condition instances.
Each prompt has an answer range of zero to six. Figure 4.2 presents this data in a
graphical format. The x-axis splits the different prompts, and the y-axis gives the
rating of each prompt in the specific condition with its respective 95 % confidence
interval. G1, SP4, and SP5 have the same order of condition ratings. Control has
the lowest rating, closely followed by the Haptic condition. Haptic w/ Audio and
Full have a significantly higher rating, the Full condition slightly edging out the
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Figure 4.2. Average rating of each prompt per study condition. The answers to
each questionnaire prompt are averaged over all participants. Visualization of Table
4.1. SP2 and SP3 are adverse prompts. Control and Haptic are rated significantly
lower than Haptic w/ Audio and Full for all but the adverse prompts. Full is the
best condition for five out of six prompts.

Haptic w/ Audio condition. SP2 and SP3 show the opposite order because they
are negated prompts. Only SP1 has a slightly different result, with the Control
condition being slightly higher rated than the Haptic condition and the Haptic w/
Audio condition being slightly higher than the Full condition.

Inverting the results of the negated prompt and averaging over the data of each
condition produces a mean presence score. Figure 4.3 shows the presence scores
for each condition with its respective 95 % error range. The x-axis shows condition
labels for each bar, while the y-axis represents the mean presence score. It shows
the same ordering as the graph of the individual prompts suggests: the Control
condition having the lowest presence score, closely followed by the Haptic condition;
Haptic w/ Audio condition and the Full condition being significantly higher, with
the Full condition slightly outperforming the Haptic w/ Audio condition. Control
and Haptic, as well as Haptic w/ Audio and Full, have overlapping error ranges.

Another visualization for the data is Figure 4.4. It shows the frequency of how the
conditions ranked in terms of their presence score for each participant. The x-axis
splits the ordered ranking, and the y-axis shows the frequency in which the condition
takes that rank. Full is clearly the preferred condition, securing the first ranking
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Figure 4.3. Mean presence scores with
95 % confidence intervals. The score is
calculated using all prompts. Haptic
w/ Audio and Full have a significantly
higher presence than both Control and
Haptic. Control has a slightly lower
score than Haptic, and Full has a slightly
higher score than Haptic w/ Audio.
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Figure 4.4. Frequency of ranking of
conditions by mean presence score.
Bars show the percentage of partici-
pants where the corresponding condition
ranked at that index. Control ranked
last for 71 % of participants. Haptic
ranked third or last for 71 % of partic-
ipants. Haptic w/ Audio ranked first for
32 % and second for 40 % of participants.
Full ranked first for over 60 % of partici-
pants. The ranking shows a clear order-
ing of Full > Haptic w/ Audio > Haptic
> Control.

across 62 % of the participants and the second ranking across 33 %. While not as
dominant as Full, the Haptic w/ Audio condition garners a significant number of top
rankings. For 33 % of participants it ranks first and for 43 % second. The Haptic
condition ranks third for 52 % and last for 19 %. Control receives the lowest rankings.
It occupies the last spot for 71 % of participants and the second to last spot for 29 %.
This plot again shows a clear hierarchy of preference for the conditions. Full leading
the ranking, followed by Haptic w/ Audio, then Haptic, and finally Control.

A one-way ANOVA test on the data of the four conditions has returned a p-value of
less than 1 %, suggesting that the population means between at least two conditions
are statistically significantly different.

A pairwise Tukey’s honestly significant difference (HSD) test is used to determine
which conditions have different presence score means from each other at a 95 %
confidence level. HSD tests each combination of conditions against each other for the
null hypothesis H0, which is that the conditions have the same mean. H0 is rejected
if the p-value of the combination is below 5 %, suggesting with high confidence that

35



4 Results and Evaluation

Table 4.2. Pairwise Tukey HSD test for statistical significance of condition pairs,
reporting the mean difference between the respective two conditions. The right
column shows the 95 % confidence interval. A star after mean difference signals a
p-value lower than 5 %.

group1 group2 meandiff CI
Control Full 1.50* [ 0.77 2.23]
Control Haptic 0.35 [-0.38 1.08]
Control Haptic w/ Audio 1.29* [ 0.56 2.02]

Full Haptic -1.15* [-1.88 -0.42]
Full Haptic w/ Audio -0.21 [-0.94 0.52]

Haptic Haptic w/ Audio 0.94* [ 0.21 1.67]

the combination of conditions has different means. Table 4.2 shows the results of
the HSD, the combination of conditions on the left, followed by their mean sample
difference, and the confidence interval. A star behind the mean difference marks H0
as rejected for this combination. Confidence interval is the range of values within
which we are 95 % confident that the true population mean lies. The results show
that the Haptic w/ Audio and Full conditions deliver a higher presence score than
the Control or Haptic conditions to a 95 % confidence level. However, the null
hypothesis was not rejected for the comparisons between Control and Haptic and
between Haptic w/ Audio and Full. This does not mean that each combination has
no difference in experienced presence, but our study samples do not allow us to draw
statistically significant conclusions.

Considering this, the results suggest that auditory feedback can significantly elevate
the feeling of presence. Furthermore, it hints that haptic feedback alone slightly
increases presence compared to when no feedback mechanisms are used but is not
able to confirm it to a significance level of 5 %. Similarly, it hints that adding visual
feedback on top of haptics and auditory cues slightly enhances the feeling of presence
but cannot confirm it to the confidence level of 95 %. An exact comparison between
the feedback mechanisms alone cannot be made as the study conditions only used
them in combinations and not individually.

Responses to the post-questionnaire support those findings. Participants were asked
to select the feedback mechanism that most enhanced their experience and which, if
any, most decreased their experience. Figure 4.5 shows the results of those questions.
The x-axis splits into the different feedback mechanisms, and the y-axis shows the
percentage of participants who selected each method. Visual feedback is the most
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Figure 4.5. Best and worst voted feedback technique by category. Data was gath-
ered from post-questionnaire questions for the feature most increasing and most
decreasing the experience. 50 % did not find any feedback distracting. visual was
voted most improving by the most participants, closely followed by audio and lastly
by haptic feedback. Haptic and audio were voted to distract from the experience by
20 %.

popular technique, with 43 % selecting it as the best feedback and only 9.5 % think-
ing it decreased their experience. In the second place, audio feedback was selected
as the best technique by 33 % of the participants and thought as decreasing to the
experience by 19 %. Haptic feedback was the least popular feature, with 24 % voting
it the best and 19 % believing it decreased their experience. 52 % of participants
believed no feedback technique was decreasing their experience. The most common
critique of haptic feedback is insufficient variance between different surfaces. Mul-
tiple participants describe the feeling of vibration as ’weird’ or ’strange’. Auditory
feedback has fewer negative comments. Some participants noted that more variance
in response to the user’s interaction and speed is required. They expect different
sounds when hitting or scratching the surface and varying audio cues depending on
the speed at which they move their hand along the surface. Multiple participants
also reported that background sounds unrelated to their interaction may help in-
crease their immersion. Examples they listed are ocean, nature, and crowd sounds.
No participants noted any specific dislike toward visual feedback in their report.
While a few participants stated that it was not very noticeable, most described it
as ’nice’, ’interesting’, or ’cool’.
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4.2 Influence of 3D Representation on Presence

This section presents the results of the user study testing the difference between
mono, stereo, and 3D mesh image representation in terms of presence as described
in Section 3.3.2.
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Figure 4.6. Response frequencies for each image representation comparison. The
x-axis is the answer possibilities on a Likert scale of -3 to 3. The y-axis shows the
percentage of participants that selected each answer to the prompts. SP2 and SP3
are adverse prompts.

Figure 4.6 shows the response frequencies for each presence questionnaire prompt
with respect to the test condition. Each subfigure has the answer possibilities on a
scale from negative three to positive three. Negative numbers mean leaning toward
the comparison’s first representation, and positive numbers mean leaning toward the
second representation. The y-axis shows the percentage of participants that selected
that answer. The colors represent the different study conditions of mono representa-
tion vs. stereo representation, mono representation vs. 3D mesh representation, and
stereo representation vs. 3D mesh representation. The prompts are the same as in
the first part of the study and are listed in Table 3.3. To interpret the results, it has
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to be noted that SP2 and SP3 are, again, adverse prompts. For the Mono vs. Stereo
comparison, all graphs favor stereo representation. The distributions of answers to
the positive prompts lean toward positive numbers, representing the stereo view.
The distributions of the adverse prompts lean toward negative numbers, represent-
ing the mono view. Similarly, the distributions of answers for the Mono vs. 3D Mesh
comparison lean toward the 3D mesh representation, however less pronounced. The
most prominent answer for five out of six prompts is zero, representing a larger in-
difference between the two representations. For the Stereo vs. 3D Mesh comparison,
the answer distributions to all prompts except SP3 show a considerable preference
toward the mono representation. The distribution of answers to SP3 is more evenly
spread between the two representations.

Figure 4.7 shows the percentage of participants favoring each image representation
per prompt. Each subgraph represents one comparison where the x-axis shows the
different prompts, and the bars represent the percentage of participants favoring
one representation or being indifferent between both representations. The y-axis
is the percentage of participants. Indifferent means the participants answered zero
for that prompt. Favoring one representation means the participants answered the
prompt in any amount favoring one representation. Blue represents a favoring of the
mono representation, orange favoring of the stereo representation, yellow favoring
of the 3D mesh representation, and gray represents being indifferent between two
representations.
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Figure 4.7. Favoring of one image representation over another for each prompt.
One plot per comparison. The bars in each plot represent how many participants
preferred each representation and how many were indifferent.
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In the Mono vs. Stereo comparison, most participants favor the stereo represen-
tation. On five prompts, more than 60 % of the participants favor the stereo rep-
resentation, while less than 12 % prefer the mono representation. SP3 shows the
same preference, although less pronounced. 47 % of participants prefer the stereo
representation while 29 % prefer the mono representation. This observation of SP3
having less pronounced results is also true in the other comparisons. For all but
SP3, over 40 % of the participants favor the 3D mesh representation over the mono
representation. With 17 %, the percentage favoring the mono representation over
the 3D mesh is almost as low as the percentage favoring the stereo representation
over the mono representation. However, in the Mono vs. 3D Mesh comparison,
more participants are indifferent to the type of representation. For five out of six
prompts, 34 % of participants have no clear preference. In the Stereo vs. 3D Mesh
comparison, more than 50 % of the participants favor the stereo representation for all
prompts but SP3. The 3D mesh representation is favored by 33 % of participants.

Figure 4.8 displays the average responses to each prompt and the combined value for
the different representation comparisons. The x-axis lists the prompts and the com-
bined value. Colored bars represent the image representation comparisons. Their
height shows the averaged response value with the 95 % confidence interval. The
combined value is the average of the responses to all prompts and all study condition
instances.
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Figure 4.8. Average rating for prompts and combined rating for each image repre-
sentation comparison. Answers are on a Likert scale between -3 and 3.
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The Mono vs. Stereo comparison trends on average 1.0 points towards the stereo
representation and always at least 0.15 points. The 3D mesh representation also
rates higher than the mono representation. In the Mono vs. 3D Mesh comparison,
the results trend on average 0.6 points toward the 3D mesh representation. Of the
two, the stereo representation is rated better than the 3D mesh presentation. In the
Stereo vs. 3D Mesh comparison, the results trend toward the stereo representation
by, on average, 0.5 points. SP3, while following the same trend as the other prompts,
has a much smaller rating in any of the comparisons. This is most likely because
the prompt’s negative wording combined with the answer labels’ negative wording
is confusing to participants.

A Wilcoxon Signed-Rank Test is conducted to check the results of the prompts and
combined values for significance. The test’s null hypothesis is that the distribution of
responses is symmetric about zero. The alternative hypothesis for Mono vs. Stereo
and Mono vs. 3D Mesh is that the distribution mean is greater than zero. The
alternative hypothesis for Stereo vs. 3D Mesh is that the distribution mean is less
than zero. This is because we expect the stereo and 3D mesh representation to beat
the mono representation, but the 3D mesh representation to loose against the stereo
representation.

Table 4.3 shows the sample mean of the prompts and the combined value for each
comparison. A star behind the mean value signifies a p-value of less than 1 % on
the Wilcoxon Signed-Rank Test. It means the image representation of the alterna-
tive hypothesis is preferred to a confidence level of 99 %. For the Mono vs. Stereo
comparison, the results for all prompts, except SP3, show a statistically significant
preference for the stereo representation. Similarly, for the Mono vs. 3D Mesh com-

Table 4.3. Means of responses to image representation prompts. The column labeled
’combined’ is mean over responses to all prompts. A star signifies a p-value of
less than 1 % on a Wilcoxon signed-rank test. It tests the null hypothesis that
the response distribution is symmetric about zero against the respective alternative
hypothesis (’greater than 0’ for the conditions Mono vs. Stereo and Mono vs. 3D
Mesh; ’less than 0’ for Stereo vs. 3D Mesh).

G1 SP1 SP2 SP3 SP4 SP5 Combined
Mono vs. Stereo 1.5* 1.24* 1.14* 0.19 0.95* 1.07* 1.02*

Mono vs. 3D Mesh 0.9* 0.71* 0.45* 0.17 0.5* 0.67* 0.57*
Stereo vs. 3D Mesh -1.17* -0.9* -0.67 -0.12 -0.5 -0.74 -0.68*
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parison, the results of the same prompts show a statistically significant preference
for the 3D mesh representation. Only GP1, SP1, and the combined value show a
statistically significant preference in the Stereo vs. 3D Mesh comparison. While the
means of the other prompts also sway towards the stereo representation, only GP1,
SP1, and combined do so to the confidence level of 99 %.

These results suggest that the stereo representation is able to create the highest
feeling of presence out of the tested techniques. Furthermore, participants also felt
a higher sense of presence for the 3D mesh representation than the mono repre-
sentation, suggesting that the gained 3D effect outweighs the artifacts produced
by the technique. This is also supported by statements of the participants in the
post-questionnaire. 95 % selected that the 3D representation improved their expe-
rience. Some participants noted that while the stereo representation has the most
convincing 3D effect, the lack of head translation freedom makes them feel dizzy.
The most common criticisms of the 3D mesh representation are the edge artifacts
and the inconsistent distance on far objects. For example, the too-close distance of
the sky took them out of the experience.

4.3 Shortcomings on the Study

This section discusses the study’s shortcomings and details improvements that could
be made to the design.

The most prominent shortcoming is the setup of prompt SP3 in the second part
of the study. SP3 from the igroup, "I did not feel present in the virtual space." is
worded negatively, and the labels for the Likert scale in the A/B study were also
worded negatively. On the lower end, the answer was "less for left-hand image", and
on the higher end, "less for right-hand image". This can be interpreted in either
direction, the lower end meaning "less presence" for the left-hand image or "feeling
less not present" for the left-hand image. With the second interpretation, the results
of the prompt should match the prompt SP5, "I felt present in the virtual space."
and with the first interpretation, they should match the inverted results. Neither of
those is the case, and instead, prompt four is the only prompt that has, on average,
almost no preference in any study condition. Reports of the study participants also
support this; multiple people exclaimed during their study execution or on their
post-questionnaire that this prompt confused them. In the future, this problem can
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be avoided by rephrasing the scale labels to be more clear about which side means
less presence for which image representation.

Another shortcoming of the study is its small sample size. With only 21 participants
making statistically significant statements in respect to the demographics is not
possible. Furthermore, the little diversity in terms of previous VR experience does
not represent regular users of VR applications, the group most likely to use and
benefit from the features investigated in the thesis.

Lastly, an improvement to the study execution would have been giving the partici-
pants examples of the different feedback methods before they went through the study
conditions. The order of conditions was randomized, which led some participants to
start with instances without any feedback mechanism. This made them unsure of
what was being tested until a condition with feedback was played. This could have
been avoided by prefixing the study with an example environment showcasing the
different feedback methods being tested.

4.4 Runtime Performance Analysis
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Figure 4.9. Performance of the implementation on the Meta Quest 3. Graphs show
the CPU utilization, GPU utilization, and average FPS during 50 s period. The
frame rate 10 % lows is 88 fps, the 1 % lows is 81 fps.

This section analyzes the performance of the implemented solution and suggests ways
to improve it in the future. Using the OVR Metrics Tool [60], the performance at
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runtime execution on a standalone Meta Quest 3 is captured. The render resolution
per eye is 2352 px by 2464 px after all render scale multipliers have been applied.
Figure 4.9 shows the CPU utilization, GPU utilization, and average frames per
second (FPS) during a 50 s time frame. The x-axis shows the time in seconds, the
left y-axis shows the percentage utilization, and the right y-axis shows the frames
per second. The light blue graph shows CPU utilization, the dark blue is GPU
utilization, and the orange is the frame rate. The CPU utilization consistently stays
below 60 % and the GPU utilization stays between 80 % to 100 %. The frame rate
stays consistent between 88 fps and 90 fps, only occasionally dipping slightly below
when changes in the rendered scene occur, such as at the 15 s timestamp. At that
time, the camera frustum moved a more tessellated part into view, which can also
be seen in the GPU performance increasing right after that point. Most likely, the
dip was caused by the headset needing to adjust the GPU clock speed to match
the higher performance requirement. This shows that the application is limited by
GPU performance, mainly because of the high triangle count used on the 3D mesh
representation to get clean edges around objects. The tessellation settings are tuned
to stay just within the performance limits of Meta Quest 3 and still achieve a smooth
frame rate. VR devices with less powerful graphics processing will not be able to
uphold this frame rate.

To increase the performance of the rendering, the mesh generation is the most critical
subsystem to optimize. In its current version, the construction is very simplistic, only
taking into account the actual need for high detail during the runtime tessellation
process. Tessellation is a very expensive technique, especially on standalone VR
devices. Furthermore, even the technique used here, which tessellates dynamically
based on gradients, creates more geometry than necessary. A smarter approach
could be analyzing the needs of the mesh based on the depthmap during the initial
mesh construction and placing the vertices along object edges and at the start and
end of gradients.

A more straightforward approach to producing a higher-detail mesh without tessel-
lation could be to utilize a destructive process. First, a high-detail mesh would be
generated, and then, progressively, neighboring vertices would be merged together
if they have a similar depth.

Finally, the mesh generation could be improved by taking more depth samples into
account to represent object distances more accurately. Depth estimation models
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often do not estimate distant objects as being the long distances away that they
should be. In the current iteration, one sample distance is used to calculate the depth
multiplier and construct the mesh. This leads to some objects being the correct
distance from the user but others being incorrect. This usually means the objects
close to the viewer look correct, but the background, like the sky, is not far enough
away. In the post-questionnaire of the study, multiple participants mentioned this,
taking them slightly out of the experience. One solution to adjust this could be
requiring multiple sample distances at different depths. Then, during the mesh
construction process, the multiplier can be calculated dynamically for each depth
value based on the sample distances provided.
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5.1 Conclusion

The increasing prevalence of consumer-friendly Virtual Reality (VR) devices has
opened up exciting possibilities for enhancing how we experience digital media,
particularly in the realm of image viewing. The immersive nature of VR provides a
unique opportunity to elevate the experience of viewing spherical images, creating
a sense of presence that traditional 2D displays cannot replicate. However, the
current landscape of VR image-viewing applications lacks the tactile and interactive
elements that could further deepen the sense of immersion. The research presented
in this thesis aimed to address this gap by exploring the potential of haptic feedback,
interactive audio cues, pseudo-haptic visual feedback, and 3D depth information to
transform static spherical images into dynamic and interactive experiences.

To achieve this goal, depthmaps were generated from spherical images using existing
machine learning depth estimation models. This thesis addressed the processing of
depthmaps to correct for inaccuracies produced by the equirectangular projection
and construct 3D meshes that allow for a more realistic and interactive representa-
tion of the scene. It also explored the design and implementation of haptic feedback,
audio cues, and visual feedback into the generated 3D environment to enhance the
user experience. Finally, a user study was conducted to evaluate the effectiveness
of the 3D mesh representation and different feedback mechanisms on the sense of
presence in VR image viewing.

The results of the study provide valuable insights into the effectiveness of the dif-
ferent feedback mechanisms and the 3D mesh representation. The findings suggest
that haptic feedback alone slightly increases the sense of presence while adding au-
dio cues significantly increases it. Furthermore, it indicates that a combination of
haptic, audio, and visual feedback creates the highest feeling of presence, but not to
a statistically significant degree over the combination of haptic and audio feedback.
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Finally, it shows that of mono, stereo, and 3D mesh representation, the stereo rep-
resentation delivers the highest feeling of presence, with the 3D mesh representation
being preferred over the mono representation.

The research presented in this thesis shows the positive effects on the sense of pres-
ence when incorporating haptic and pseudo-haptic feedback in VR image viewing.
Furthermore, it gives insight into what is needed to implement the feedback mech-
anisms and how the different feedback techniques affect the feeling of presence.
Lastly, it shows how changing the image representation can have large effects on
the amount of presence experienced. These insights can guide the development
of more immersive and interactive VR applications, particularly those focused on
image viewing.

5.2 Future Work

Setting up images to support the feedback methods and 3D mesh representation
presented in this thesis is currently a manual process. In the future, machine learning
could aid in automating the generation of material maps using image segmentation
models. Furthermore, semantic segmentation models could provide descriptions
of surfaces to configure the haptic materials automatically. Improvements to the
mesh construction could be made using edge detection or a destructive process as
described in Section 4.4. The construction could also be replaced with a machine-
learning approach. There is also the potential of expanding the work to video
content. For this, the depthmap and haptic map would need to be extended into the
time dimension, which requires special care to keep temporal consistency between
frames.

Additionally, the study’s limitations, such as the small sample size, the short dura-
tion spent with stereo images, and the potential influence of prior VR experience,
highlight areas for improvement in future research designs. A direct extension of
this work could be to investigate the effects of the feedback mechanism individu-
ally or test if the 3D mesh representation with the feedback techniques delivers a
higher presence than the stereo representation with no feedback. Another direction
could be investigating how the combination of stereo representation and feedback
mechanism could work. Aside from spherical images, this work also presented a
process for creating 3D representations of planar images. However, the study did

47



5 Conclusion and Future Work

not investigate the effect on the sense of presence for these formats because of time
limitations. The 3D mesh representation of planar images increases the FOV cov-
ered by the scene by stretching features, such as the floor towards the viewer. This
could lead to a larger increase in presence between the mono and 3D mesh repre-
sentations than for spherical images. Thus, another extension to this work could be
investigating the 3D mesh representation, haptic, and pseudo-haptic feedback for
other image formats.
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